# TFT-LCD Module SPECIFICATION

| Customo     | er:         _ |             |              |  |  |
|-------------|---------------|-------------|--------------|--|--|
| Model N     | ame: _        | VI1011      | A14          |  |  |
| SPEC N      | O.: _         |             |              |  |  |
| Date:       | _             | 2022.0      | <b>)5.20</b> |  |  |
| Version     | -             | V0          | 5            |  |  |
|             | liminary s    |             | ation        |  |  |
| Approved by |               | Comment     |              |  |  |
|             |               |             |              |  |  |
|             |               |             |              |  |  |
| Approved by | Reviewed by   |             | Prepared by  |  |  |
|             | フトっ           | <u>- 44</u> |              |  |  |

### **Record of Revision**

Toroson Group copyright 2022 All right reserved, Copying forbidden.

| Version  | Revise Date | Page                    | Content                                                                                                                                                                               |
|----------|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEISIOII | Tevise Bate | 1 age                   | Content                                                                                                                                                                               |
| V02      | 2020/06/06  | 11,15<br>17<br>18       | Add Package Drawing<br>&weight,ST&OP temperature                                                                                                                                      |
| V03      |             | 1<br>2<br>5<br>15<br>17 | <ol> <li>General Specifications</li> <li>Pin Assignment</li> <li>Operation Specifications</li> <li>Reliability Test Items</li> <li>Mechanical Drawing</li> </ol>                      |
| V04      |             | 4 5 6                   | Typical Operation Conditions<br>Current Consumption                                                                                                                                   |
| V05      | 20220520    |                         | <ul> <li>2. Pin Assignment</li> <li>5 3.1 Absolute Maximum Ratings</li> <li>6 3.2 Typical Operation Conditions</li> <li>7 3.4 Power Sequence</li> <li>9 3.5.2 Timing Table</li> </ul> |

#### **Contents**

| 1.General Specifications                |    |
|-----------------------------------------|----|
| 2.Pin Assignment                        |    |
| 3. Operation Specifications             | 04 |
| 3.1.Absolute Maximum Ratings            |    |
| 3.1.1.Typical Operation Conditions      |    |
| 3.1.2.Current Consumption               |    |
| 3.1.3.Backlight Driving Conditions      |    |
| 3.2.Power Sequence                      |    |
| 3.3. LVDS Signal Timing Characteristics |    |
| 3.3.1. AC Electrical Characteristics    | 08 |
| 3.3.2. Timing Table                     |    |
| 3.3.3. LVDS DData Input Format          |    |
| 4. Optical Specifications               |    |
| 5.Reliability Test Items                |    |
| 6.General Precautions                   |    |
| 6. 1.Safety                             |    |
| 6. 2.Handling                           |    |
| 6.3.Static Electricity                  |    |
| 6. 4.Storage                            |    |
| 6. 5.Cleaning                           |    |
| 7.Mechanical Drawing                    |    |
| 8 Package Drawing                       | 10 |

SPEC NO.: VI101IA14 Date:2022/03/17 Page:01/18

# 1. General Specifications

| No. | ltem                        | Specification                | Remark |
|-----|-----------------------------|------------------------------|--------|
| 1   | LCD size                    | 10.1 inch(Diagonal)          |        |
| 2   | Driver element              | a-Si TFT active matrix       |        |
| 3   | Resolution                  | 1280X3(RGB)X800              |        |
| 4   | Display mode                | Normally Black, Transmissive |        |
| 5   | Dot pitch                   | 0.0565(W)x0.1695(H) mm       |        |
| 6   | Active area                 | 216.96(W)x135.60(H) mm       |        |
| 7   | Panel size                  | 229.46(W)x149.1(H)x2.5(D)mm  | Note 1 |
| 8   | Surface treatment           | НС                           |        |
| 9   | Color arrangement           | RGB-stripe                   |        |
| 11  | Interface                   | LVDS                         |        |
| 12  | Backlight power consumption | 2.1W (Typ.)                  |        |
| 13  | Panel power consumption     | 0.7W (Typ.)                  | Note 2 |
| 14  | IC                          | Ek79202                      |        |
| 15  | Weight                      | 205g                         |        |

Note 1: Refer to Mechanical Drawing.

Note 2: Including T-con Board power consumption

SPEC NO.: VI101IA14 Date:2022/03/17 Page:02/18

# 2.Pin Assignment

A 40pinconnector is used for the module electronics interface. This model used 196479-40041-3 manufactured by P2 connector.

| PinNo. | Symbol | I/O | Function                       | Remark                 |
|--------|--------|-----|--------------------------------|------------------------|
| 1      | NC     |     | No connection                  |                        |
| 2      | VDD    | Р   | Power Supply                   |                        |
| 3      | VDD    | Р   | Power Supply                   |                        |
| 4      | NC     |     | Only for INX test              |                        |
| 5      | NC     |     | Only for INX test              |                        |
| 6      | NC     |     | Only for INX test              |                        |
| 7      | GND    | Р   | Ground                         |                        |
| 8      | Rxin0- | ı   | -LVDS Differential Data Input  | R0 <del>-R</del> 5, G0 |
| 9      | Rxin0+ | I   | +LVDS Differential Data Input  | No No, Go              |
| 10     | GND    | Р   | Ground                         |                        |
| 11     | Rxin1- | I   | -LVDS Differential Data Input  | G1~G5, B0,B1           |
| 12     | Rxin1+ | I   | +LVDS Differential Data Input  | G1~G5, 60,61           |
| 13     | GND    | Р   | Ground                         |                        |
| 14     | Rxin2- | I   | -LVDS Differential Data Input  | B2-B5,HS,VS,           |
| 15     | Rxin2+ | I   | +LVDS Differential Data Input  | DE                     |
| 16     | GND    | Р   | Ground                         |                        |
| 17     | RxCLK- | I   | -LVDS Differential Clock Input | LVDS CLK               |
| 18     | RxCLK+ | I   | +LVDS Differential Clock Input | LVD3 CLK               |
| 19     | GND    | Р   | Ground                         |                        |
| 20     | Rxin3- | I   | -LVDS Differential Data Input  | R6, R7, G6, G7,        |
| 21     | Rxin3+ | I   | +LVDS Differential Data Input  | B6, B7                 |
| 22     | GND    | Р   | Ground                         |                        |
| 23     | NC     |     | No connection                  |                        |
| 24     | NC     |     | No connection                  |                        |
| 25     | GND    | Р   | Ground                         |                        |
| 26     | NC     |     | No connection                  |                        |

# DIP 型森科技有限公司

# $Xiam\,en\,To\,roson\,Te\,chnolog\,y\,C\,o.\,,\,L\,td$

SPEC NO.: VI101IA14 Date:2022/03/17 Page:03/18

| 27 | NC   |   | No connection            |  |
|----|------|---|--------------------------|--|
| 28 | NC   |   | No connection            |  |
| 29 | AVDD | Р | Power for Analog Circuit |  |
| 30 | GND  | Р | Ground                   |  |
| 31 | LED- | Р | LED Cathode              |  |
| 32 | LED- | Р | LED Cathode              |  |
| 33 | NC   |   | No connection            |  |
| 34 | NC   |   | No connection            |  |
| 35 | VGL  | Р | Gate OFF Voltage         |  |
| 36 | NC   |   | No connection            |  |
| 37 | NC   |   | No connection            |  |
| 38 | VGH  | Р | Gate ON Voltage          |  |
| 39 | LED+ | Р | LED Anode                |  |
| 40 | LED+ | Р | LED Anode                |  |

SPEC NO.: VI101IA14 Date:2022/03/17 Page:04/18

# 3. Operation Specifications

# 3.1. Absolute Maximum Ratings

(Note 1)

| Item                 | Symbol           | Valu | ues  | Unit  | Remark |
|----------------------|------------------|------|------|-------|--------|
| item                 | - Cymilion       | Min. | Max. | Offic | Kemark |
|                      | VDD              | 2. 2 | 3.6  | V     |        |
|                      | AVDD             | 7. 9 | 8. 5 | V     |        |
| Power voltage        | V <sub>G</sub> H | 13   | 17   | V     |        |
|                      | V <sub>G</sub> L | -11  | -15  | V     |        |
|                      | Vgh-Vgl          | 24   | 32   | V     |        |
| OperationTemperature | Тор              | -20  | 70   | °C    |        |
| Storage Temperature  | Тѕт              | -30  | 80   | °C    |        |

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:05/18

#### 3.1.1. Typical Operation Conditions

Note 1)

| Itam                    | Symbol           |         | Unit | Damauk              |      |        |
|-------------------------|------------------|---------|------|---------------------|------|--------|
| Item                    | Symbol           | Min.    | Тур. | Max.                | Unit | Remark |
| Power voltage           | VDD              | 2. 3    | 2. 5 | 3.6                 | V    | Note 2 |
|                         | AVDD             | 8. 0    | 8. 2 | 8. 4                | V    |        |
|                         | V <sub>G</sub> H | 14. 5   | 15   | 15.5                | V    |        |
|                         | VgL              | -13.5   | -13  | -12.5               | V    |        |
| Input signal voltage    | ViH              | 0.8DVpd |      | VDD                 | V    | Note 2 |
| Input logic low voltage | VIL              | 0       | _    | 0.2DV <sub>DD</sub> | V    | Note 3 |

Note 1: Be sure to apply VDD and VGL to the LCD gst, and then apply VGH.

Note 2: VDD setting should match the signals output voltage (refer to Note 3) of customers system board.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:06/18

#### 3.1.2. Current Consumption

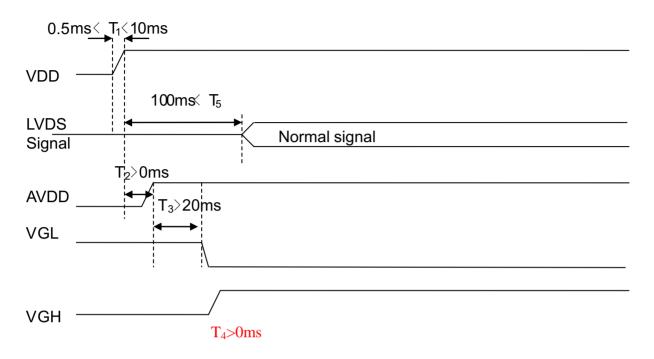
| Item               | Symbol            |      | Values | Unit | Remark |                       |  |
|--------------------|-------------------|------|--------|------|--------|-----------------------|--|
| item               | Symbol            | Min. | Тур.   | Max. | Offic  | Remark                |  |
| Current for Driver | Ідн               | 1. 4 | 1. 8   | 2. 2 | uA     | VgH=15V               |  |
|                    | IgL               | 1. 3 | 1. 7   | 2. 1 | uA     | V <sub>GL</sub> =-13V |  |
|                    | IV <sub>DD</sub>  | 26   | 31     | 36   | mA     | V <sub>DD</sub> =2.5V |  |
|                    | IAV <sub>DD</sub> | 17   | 22     | 27   | mA     | Avdd=8.2V             |  |

#### 3.1.3. Backlight Driving Conditions

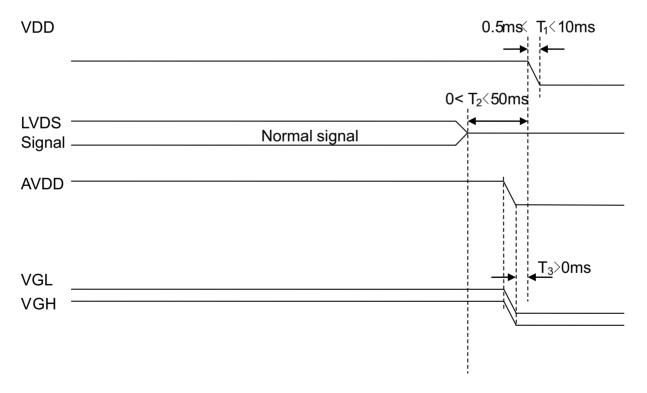
| Itama                     | Symbol |        | Values | l lmi4 | Damark |        |
|---------------------------|--------|--------|--------|--------|--------|--------|
| Item                      | Symbol | Min.   | Тур.   | Max.   | Unit   | Remark |
| Voltage for LED backlight | VL     | 8.4    | 9. 3   | 10.5   | V      | Note 1 |
| Current for LED backlight | ΙL     | 258    | 260    | 265    | mA     |        |
| LED life time             | _      | 20,000 | _      | _      | Hr     | Note 2 |

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25°C and IL=260mA

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=260mA. The LED lifetime could be decreased if operating IL is lager than 260mA.


#### 3.1.4. Backlight Absolute Maximun Ratings

| Item                 | Symbol | Condition                      | Va <b>lue</b> | Unit |
|----------------------|--------|--------------------------------|---------------|------|
| Forward Current      | IFM    |                                | 300           | mA   |
| Peak Forward Current | IFP    | Duty:1/10 pulse<br>Width 0.1ms | 600           | mA   |
| Power Description    | Pd     |                                | 3150          | mW   |

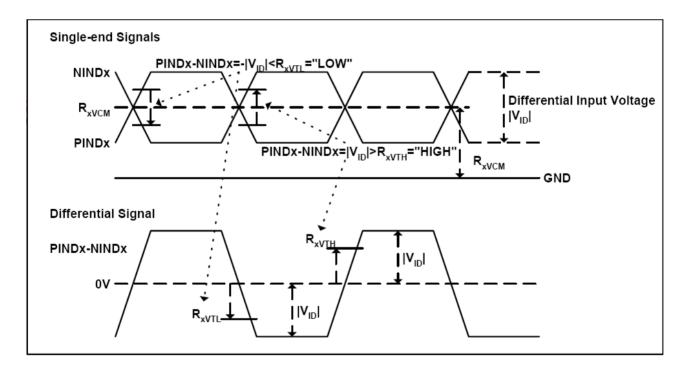

SPEC NO.: VI101IA14 Date:2022/03/17 Page:07/18

### 3.2. Power Sequence

#### a. Power on:



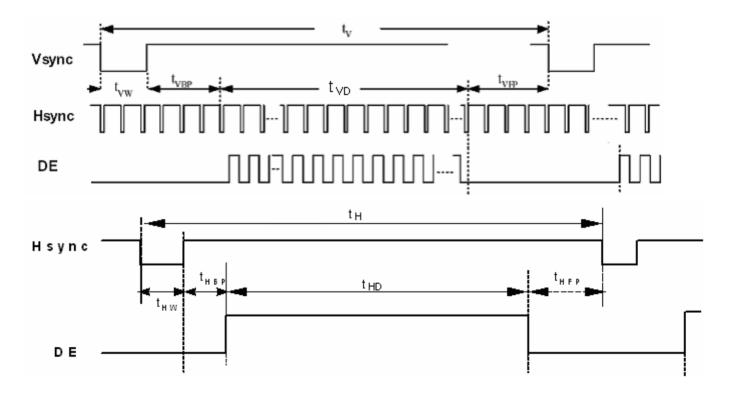
#### b. Power off:




SPEC NO.: VI101IA14 Date:2022/03/17 Page:08/18

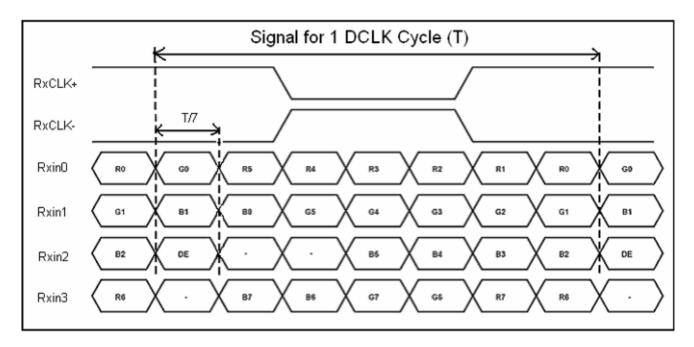
# 3.3. LVDS Signal Timing Characteristics

#### 3.3.1. AC Electrical Characteristics


| Item                                          | Symbol | Values |      |      | Unit  | Remark     |
|-----------------------------------------------|--------|--------|------|------|-------|------------|
| item                                          | Cymbol | Min.   | Тур. | Max. | Offic | Remark     |
| LVDSDifferentialinput high Thresholdvoltage   | RxVтн  | -      | -    | +100 | mV    | D 13V      |
| LVDSDifferentialinput low<br>Thresholdvoltage | RxVTL  | -100   | -    | -    | mV    | RxVCM=1.2V |
| LVDSDifferentialinput common mode voltage     | Rxvсм  | 0.7    | -    | 1.6  | V     |            |
| LVDSDifferentialvoltage                       | VID    | 200    | -    | 600  | mV    |            |



SPEC NO.: VI101IA14 Date:2022/03/17 Page:09/18


#### 3.3.2. Timing Table

| Clock Frequency                    | 1/Tc         | 66.3 | 72.4 | 78.9 | MHz | Frame rate<br>=60Hz |
|------------------------------------|--------------|------|------|------|-----|---------------------|
| Horizontal display area            | tHD          | 1280 |      |      | Tc  |                     |
| HSYNC pulse width                  | thpw         | 2    | -    | 40   | Тс  |                     |
| HSYNC back porch(with pulse width) | thbp         | 88   | 88   | 88   | Тс  |                     |
| HSYNC front porch                  | tHFP         | 12   | 72   | 132  | Tc  |                     |
| Vertical display area              | <b>t</b> vd  | 800  |      |      | tн  |                     |
| VSYNC pulse width                  | <b>t</b> vpw | 2    | -    | 20   | tн  |                     |
| VSYNC back porch(with pulse width) | t∨BP         | 23   | 23   | 23   | tн  |                     |
| VSYNC front porch                  | tVFP         | 1    | 15   | 49   | tн  |                     |



SPEC NO.: VI101IA14 Date:2022/03/17 Page:10/18

#### 3.3.3. LVDS DData Input Format



SPEC NO.: VI101IA14 Date:2022/03/17 Page:11/18

# 4. Optical Specifications

| lkana                     | Symbol | Q 177             | Values                    |       |       | 11:::4 | Damada                     |
|---------------------------|--------|-------------------|---------------------------|-------|-------|--------|----------------------------|
| Item                      | Symbol | Condition         | Min.                      | Тур.  | Max.  | Unit   | Remark                     |
|                           | θι     | Φ=180°(9 o'clock) | P=180°(9 o'clock) 75 85 - |       |       |        |                            |
| Viewing angle<br>(Cr≥ 10) | θR     | Φ=0°(3 o'clock)   | 75                        | 85    | _     | dograd | Note 1                     |
|                           | θτ     | Φ=90°(12 o'clock) | 75                        | 85    | _     | degree |                            |
|                           | θв     | Φ=270°(6 o'clock) | 75                        | 85    | _     |        |                            |
| Response time             | Ton    |                   | _                         | 10    | 20    | msec   | Note 3                     |
|                           | Toff   | *                 | _                         | 15    | 30    | msec   | Note 3                     |
| Contrast ratio            | CR     |                   | 600                       | 800   | _     | -      | Note 4                     |
| Color chromaticity        | Wx     | Normal<br>θ=Φ=0°  | 0. 24                     | 0. 29 | 0.33  | _      | Note 2<br>Note 5<br>Note 6 |
|                           | WY     |                   | 0.28                      | 0.30  | 0. 37 | _      |                            |
| Luminance                 | L      |                   | 350                       | 400   | _     | cd/m2  | Note 6                     |
| Luminance uniformity      | Yυ     |                   | 75                        | _     | -     | %      | Note 7                     |

#### **Test Conditions:**

- 1. VDD=2.5V, the ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:12/18

#### Note 1: Definition of viewing angle range

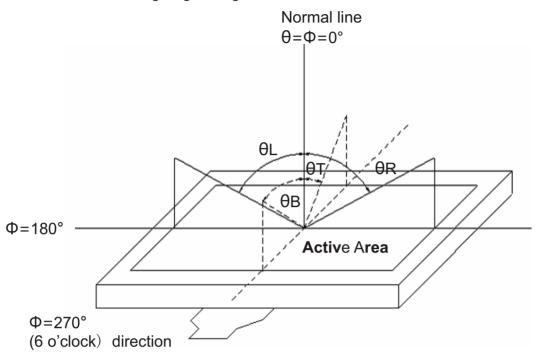



Fig. 4-1 Definition of viewing angle

#### Note 2: Definition of optical measurement system

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1°/Height: 500mm.)

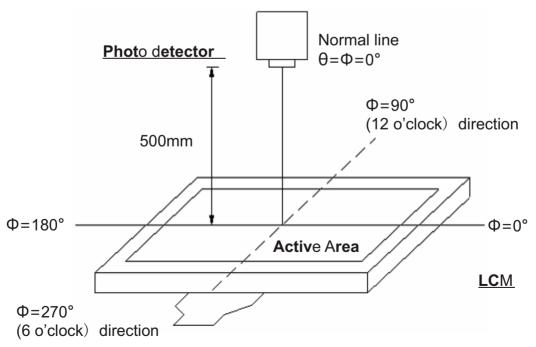



Fig. 4-2 Optical measurement system setup

SPEC NO.: VI101IA14 Date:2022/03/17 Page:13/18

#### Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time(toff) is the time between photo detector output intensity changed from 10% to 90%.

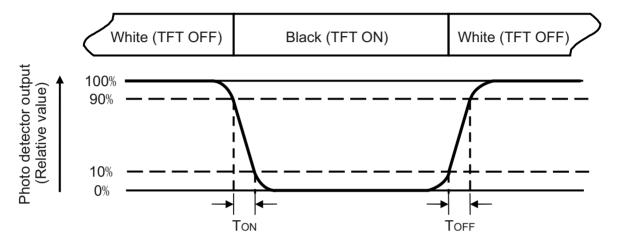



Fig. 4-3 Definition of response time

#### Note 4: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD on the "White "state Luminance measured when LCD on the "Black state"

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of L.CD

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is IL=260mA.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:14/18

#### Note 7:Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4 ). Every measuring point is placed at the center of each measuring area.

L-----Active area length W----- Active area width

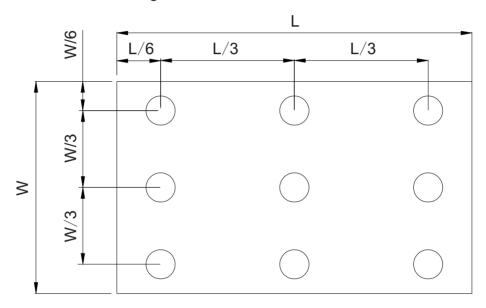



Fig. 4-4 Definition of measuring points

Bmax: The measured maximum luminance of all measurement poition. Bmin: The measured minimum luminance of all measurement poition.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:15/18

# 5. Reliability Test Items

(Note3)

| ltem                                        | Test Condition                                                                                          | Remark  |               |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|---------------|
| High Temperature Storage                    | Ta = 80°C                                                                                               | 120 hrs | Note 1,Note 4 |
| Low Temperature Storage                     | Ta = -30°C                                                                                              | 120hrs  | Note 1,Note 4 |
| High Temperature Operation                  | Ta = 70°C                                                                                               | 120hrs  | Note 2,Note 4 |
| Low Temperature Operation                   | Ta = -20°C                                                                                              | 120hrs  | Note 1,Note 4 |
| Operate at High<br>Temperature and Humidity | +40°C,90%RH                                                                                             | 120hrs  | Note 4        |
| Thermal Shock                               | -20°C/30 m in ~+70°C total 100 cycles, Start v temperature and end w temperature.                       | Note 4  |               |
| Vibration Test                              | Frequency range:10~5 Stroke:1.5mm Sweep:10Hz~55Hz~10 2 hours for each directi X.Y. Z(.6 hours for total |         |               |
| Mechanical Shock                            | 100G 6ms,±X, ±Y, ±Z 3 times for each direction                                                          |         |               |
| Package Vibration Test                      | Random Vibration: ISTA-3A 1HZ-200HZ Grms=0.53 (Half hours for directio                                  | n of Z) |               |
| Package Drop Test                           | Height:60 cm<br>1 corner, 3 edges, 6 surfaces                                                           |         |               |
| Electro Static Discharge                    | ±2KV, Human Body Mode, 100pF/1500Ω                                                                      |         |               |

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

SPEC NO.: VI101IA14 Date:2022/03/17 Page:16/18

# 6.General Precautions

## 6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

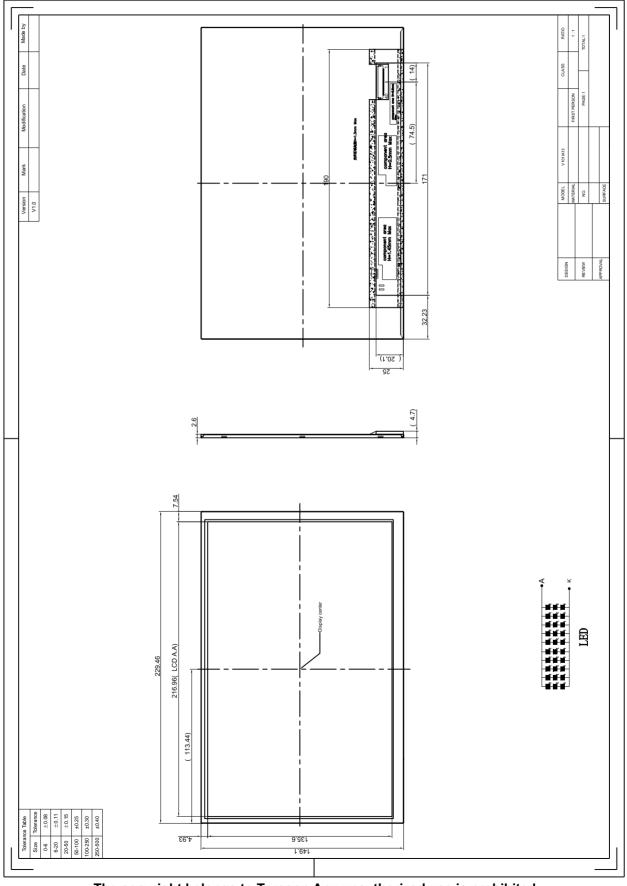
### 6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
  - 4. Keep a space so that the LCD panels do not touch other components.
- 5.Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6.Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
  - 7.Do not leave module in direct sunlight to avoid malfunction of the lcs.

### 6.3. Static Electricity

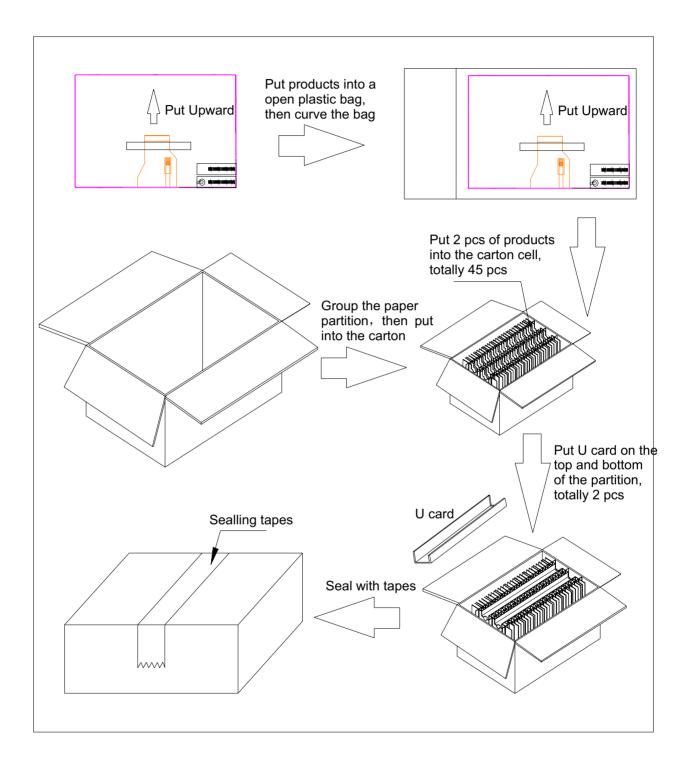
- 1.Be sure to ground module before turning on power or operating module.
- 2.Do not apply voltage which exceeds the absolute maximum rating value.

### 6.4. Storage


- 1.Store the module in a dark room where must keep at  $25\pm10^{\circ}\text{C}$  and 65%RH or less.
- 2.Do not store the module in surroundings containing organic solvent or corrosive gas
  - 3. Store the module in an anti-electrostatic container or bag.

### 6.5. Cleaning

- 1.Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2.Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.


SPEC NO.: VI101IA14 Date:2022/03/17 Page:17/18

# 7. Mechanical Drawing



SPEC NO.: VI101IA14 Date:2022/03/17 Page:18/18

# 8. Package Drawing

